Radar Antenna Design Engineers Require Cost-Effective Solutions for Their Antenna PCBs

IWPC Workshop 2022, September 16 Junko Konishi Ph.D. / Multi Material General Division, Electronics Company, AGC Inc. Harry Choi / KOREA TACONIC CO.,LTD Qiang Wei / AGC Multi Material Singapore Pte. Ltd.

AGC Inc.

Your Dreams, Our Challenge

AGC

AGC Global Operation for CCL business

ADAS – The Evolution of Driving

Your Dreams, Our Challenge

ADAS Applications

- ADAS uses many kinds of sensors. Radar's specifications (detection distance, azimuth, relative speed, hight of object) are especially different depending on the functions.
- -> Antenna design and materials need to be optimized depending on radar type.

Product Roadmap for Car Radar Antenna Application

Why Trend Toward Thermoset Materials for High Freq. Applications ? AGC

Limitations using PTFE PCB

- 1. Additional processing
 - Plasma or tetraetch
 PTH/Smask/ML bonding
 - Need to avoid mechanical stress
- 2. Limited options for homogeneous multilayers

Challenges for thermoset

Dk/Df vs temperature

- 1. Thermally unstable
 - Degradation by heat

PTFE CCL : Df < 0.001

2. Higher loss

- ૢ૾ૡૻૢૢૢૡૢૢૢૢૢૡૢઌૡૢૹ
- Very Low loss thermoset CCL Df > 0.02

AGC Meteorwave 4000M – meeting the challenge!

Properties	Conditions	NF-30 (PTFE)	Meteorwave 4000M (Thermoset)	Unit
Electrical Properties				
Dielectric Constant	@ 10 GHz	3.0	3.2	
	@ 77 GHz	3.00	3.18	
Dissipation Factor	@ 10 GHz	0.0013	0.002	
Insersion loss	@ 77GHz	-0.43	-0.63	dB/cm
Thermal Properties				
Glass Transition Temperature (Tg)	DMA (Tan d Peak, tensile)	-	200	°C
Degradation Temperature	5% wt. loss	530	390	°C
Time to delamination @ 300°C		>120	>120	minutes
Mechanical Properties				
Peel Strength	1/2 oz Cu (18μ) After Solder Float	0.7	0.6	N/mm
CTExy	-40 to + 125°C	11 / 15	18 /18 ⁽¹⁾	ppm/°C
CTEz	50°C to Tg	30	55	ppm/°C
Chemical / Physical Properties				
Moisture Absorption		0.05	0.12	wt. %

Improved Design Flexibility by Build-Up Process

- Sequential build-up process can decrease PCB area and the number of layers.
- Only thermoset resin system can be used for build-up process.

Conventional hybrid antenna board

Antenna board created by sequential build-up process

Your Dreams, Oui

Examples of PCB with Build-Up Layers

Evaluation Condition

Need to show the stability under harsh environment

- High and Low Temperature
- > High Humidity
- Long Term Aging (under high temperature)
- Before and After PCB process

etc...

MW4000M Dk/Df vs Frequency

• Stable dielectric properties over a wide frequency range.

Micro strip line ring resonator method

- 5mil (127um) thickness
- PCB coupon with ring resonator
- Room Temperature
- Frequency: 10-100GHz

MW4000M Insertion Loss

The Lowest insertion loss among thermoset materials for radar application. •

0

Low insertion loss competitive to PTFE laminate lacksquare

Micro strip line method

- 5mil (127um) thickness ٠
- Two-length micro strip line (8inch-2inch)

MW4000M Aging Resistance at 125 °C / Material

0

0

200

• Stable dielectric properties under aging at 125°C.

Split Post Dielectric Resonator (SPDR) method

- 5mil (127um) thickness
- Copper foil was etched
- Temperature: 125°C
- Frequency:10GHz

400

Time [h]

600

800

13

1000

MW4000M Aging Resistance at 125 °C / PCB level

• Stable Dk and Insertion loss under aging at 125°C.

Micro strip line ring resonator method

- 5mil (127um) thickness
- PCB coupon with ring resonator
- Temperature: 125°C
- Frequency: 77GHz

Micro strip line method

- 5mil (127um) thickness
- Two-length micro strip line (8inch-2inch)
- Temperature: 125°C
- Frequency: 77GHz

MW4000M Dk/Df vs Temperature

• Stable dielectric performance over a wide temperature range.

Clamped stripline method (IPC-TM-650.2.5.5.5C)

- Temperature -50 ~ 140°C
- Frequency:10GHz

MW4000M Insertion Loss vs Temperature

• Stable insertion loss over a wide temperature range.

Micro strip line method

MW4000M Antenna Performance vs Temperature

Patch antenna return loss

- Temperature: 15 ~ 85°C
- Frequency: 16~32 GHz

Coupon for patch antenna return loss measurement

Temperature Monitoring

Antenna Performance / Resonant Frequency Shift vs Temp.

• Stable Resonant Frequency over a wide temperature range.

Summary

AGC our Dreams, Our Challenge

Benefits of MW4000M

Good Process Ability

- Simple and easy PCB process
 Processing same as FR4
 Good compatibility with FR4 in hybrid construction.
 Vast manufacturing experience by many PCB makers.
- Availability of Multiple Lamination

Stable Electric Performance

- Low insertion loss competitive to PTFE laminate
- High aging resistance (both of material and PCB level)
- Low temperature dependence (both of material and antenna level)

Good reliability

- Robust thermal performances.
- Compatible with lead free assembly.
- Good thermal cycling properties

END

You can contact me at any time

Junko Konishi, Ph.D. Multi Material General Division, Electronics Company, AGC Inc. Junko.Konishi@agc.com

